China wholesaler 10bar 15bar Liquid Petroleum Gas Booster Compressor 7.5kw LPG Compressor air compressor portable

Product Description

LPG LNG storage tank LPG compressor Ammonia Reciprocating Piston Compressor 

ZW series Oil-Free LPG Gas Compressor, it has many functions, small volume, lightweight, small power, stable and reliable operation, and has good safety performance. It can transport highly volatile liquid such as liquefied petroleum gas and recover the gas left in the tank, Liquid Natural Gas. Due to the unique oil-free lubrication design, there is no need for oil lubrication in the cylinder, so it will not pollute the medium (ensure the purity of gas) and keep the transported substances pure.

Excellent complement, satisfied performance, light weight, small occupying area, more compressing ratio, smooth running, long service life of spare parts, simple operation, reliability and easy maintenance. ZW series compressors have both fixed or movable types; both normal atmosphere (0.1~1.5MPa) and high pressure (1.6~2.4MPa) to meet different requirements of customers.
 

LPG Compressor Technical Parameters
 
Model Flow rate m3/min Inlet pressure (MPa) Discharge pressure (MPa) Motor power (Kw)
ZW-0.6/10-16 0.6 1.6 7.5
ZW-0.8/10-16 0.8 1 1.6 11
ZW-1.0/10-16 1 1 1.6 15
ZW-1.3/10-16 1.3 1 1.6 18.5
ZW-1.5/10-16 1.5 1 1.6 22
ZW-2.0/10-16 2 1 1.6 30
ZW-2.5/10-16 2.5 1 1.6 37
ZW-3.0/10-16 3 1 1.6 45
ZW-4.0/10-16 4 1 1.6 55
ZW-8.0/10-16 8 1 1.6 110
ZW-1.0/1-10 1 0.1 1 15
ZW-1.0/2-5 1 0.2 0.5 7.5
The above models are commonly used and can be customized according to  each industry plant’s different requirements.
The above data are calculated according to: 
Inlet pressure: ≤ 1.0Mpa; 
Exhaust pressure: ≤ 1.6Mpa; 
Maximum pressure difference: 0.6Mpa; 
Maximum instantaneous pressure ratio: ≤6 
Cooling mode: air cooling or water cooling (according to end user’s local conditions to design); 
Inlet temperature: 40ºC; 
Liquid density of liquefied gas: 582.5kg/m3. 
Note: please you kindly send us your base specifications inquiry to mail: CHINAMFG at keep-win dot com.

Main purpose and scope of Application

This series of compressors are mainly used for loading, unloading, tank pouring, residual gas recovery, tank vehicle loading, unloading, bottle filling, bottle emptying, conveying, residue removal and it can be also used in the processes of other petrol-industries, residual liquid recovery and other operations of LPG. They are ideal equipment for liquid transportation and gas recovery. Therefore, it is widely used in LPG storage and distribution station, gas mixing station, gasification station, tank plant, automobile filling station, etc., especially in large, medium and small LPG stations.

In addition, it is suitable for liquid transportation and residual gas recovery of propane, butane, butene and other volatile substances with low boiling point. Its variant products can be used for liquid transportation and gas recovery of propylene, liquid ammonia, etc.

Technical Paramter

No. Item Specification
1 Compressor Model ZW-0.6/10-15 
2 Compress  medium LPG Gas
3 Structure Vertical Type, Air Cooking, Single action  
4 Compress stage number single stage
5 volume capacity (F.A.D)   0.6 m3/min
6 Suction pressure   1Mpa
7 Discharge pressure   1.5Mpa
8 Suction temperature  ≤40ºC
9 Discharge temperature ≤110ºC
10 Compressor speed(r/min) 500
11 Motor Power  7.5KW ,YB3-132M-4   dIIBT4 
12 Cooling method Air Cooling
13 Lubricate method Crank case, Crankshaft, Connect rod, Crosshead Splash lubrication
Cylinder, filling   Oil free lubrication
14 Driven Method Belt driven
15 Installation  with skid-board
16 Noise    85dB (A)
17 Vibration intensity 28
18 Dimension about 1220×680×980mm
19 Weight about 360KG
20 Scope of supply Compressor, motor, common underframe, gas pipeline, four-way valve, safety valve, instrument, random spare parts, factory documents, etc.

 

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Lubrication Style: Oil-free
Cooling System: Air Cooling
Cylinder Arrangement: Balanced Opposed Arrangement
Cylinder Position: Vertical
Structure Type: Closed Type
Compress Level: Single-Stage
Samples:
US$ 2800/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

air compressor

How Do Gas Air Compressors Compare to Diesel Air Compressors?

When comparing gas air compressors to diesel air compressors, there are several factors to consider, including fuel efficiency, power output, cost, maintenance requirements, and environmental impact. Here’s a detailed explanation of how these two types of air compressors compare:

1. Fuel Efficiency:

Diesel air compressors are generally more fuel-efficient compared to gas air compressors. Diesel engines have higher energy density and better overall efficiency than gasoline engines. This means that diesel compressors can produce more work output per unit of fuel consumed, resulting in lower fuel costs and longer runtimes between refueling.

2. Power Output:

Diesel air compressors typically provide higher power output compared to gas air compressors. Diesel engines are known for their robustness and ability to generate higher torque, making them suitable for heavy-duty applications that require a larger volume of compressed air or higher operating pressures.

3. Cost:

In terms of upfront cost, gas air compressors are generally more affordable compared to diesel air compressors. Gasoline engines and components are typically less expensive than their diesel counterparts. However, it’s important to consider long-term costs, including fuel expenses and maintenance, which can vary depending on factors such as fuel prices and usage patterns.

4. Maintenance Requirements:

Diesel air compressors often require more regular maintenance compared to gas air compressors. This is because diesel engines have additional components such as fuel filters, water separators, and injector systems that need periodic servicing. Gas air compressors, on the other hand, may have simpler maintenance requirements, resulting in reduced maintenance costs and time.

5. Environmental Impact:

When it comes to environmental impact, diesel air compressors produce higher emissions compared to gas air compressors. Diesel engines emit more particulate matter, nitrogen oxides (NOx), and carbon dioxide (CO2) compared to gasoline engines. Gas air compressors, especially those powered by propane, tend to have lower emissions and are considered more environmentally friendly.

6. Portability and Mobility:

Gas air compressors are generally more portable and easier to move compared to diesel air compressors. Gasoline engines are typically lighter and more compact, making gas air compressors suitable for applications where mobility is essential, such as construction sites or remote locations.

It’s important to note that the specific requirements of the application and the availability of fuel sources also play a significant role in choosing between gas air compressors and diesel air compressors. Each type has its own advantages and considerations, and the choice should be based on factors such as the intended usage, operating conditions, budget, and environmental considerations.

In conclusion, gas air compressors are often more affordable, portable, and suitable for lighter applications, while diesel air compressors offer higher power output, fuel efficiency, and durability for heavy-duty operations. Consider the specific needs and factors mentioned above to determine the most appropriate choice for your particular application.

air compressor

How Do Gas Air Compressors Contribute to Energy Savings?

Gas air compressors can contribute to energy savings in several ways. Here’s a detailed explanation:

1. Efficient Power Source:

Gas air compressors are often powered by gasoline or diesel engines. Compared to electric compressors, gas-powered compressors can provide higher power output for a given size, resulting in more efficient compression of air. This efficiency can lead to energy savings, especially in applications where a significant amount of compressed air is required.

2. Reduced Electricity Consumption:

Gas air compressors, as standalone units that don’t rely on electrical power, can help reduce electricity consumption. In situations where the availability of electricity is limited or expensive, using gas air compressors can be a cost-effective alternative. By utilizing fuel-based power sources, gas air compressors can operate independently from the electrical grid and reduce dependence on electricity.

3. Demand-Sensitive Operation:

Gas air compressors can be designed to operate on demand, meaning they start and stop automatically based on the air requirements. This feature helps prevent unnecessary energy consumption during periods of low or no compressed air demand. By avoiding continuous operation, gas air compressors can optimize energy usage and contribute to energy savings.

4. Energy Recovery:

Some gas air compressors are equipped with energy recovery systems. These systems capture and utilize the heat generated during the compression process, which would otherwise be wasted. The recovered heat can be redirected and used for various purposes, such as space heating, water heating, or preheating compressed air. This energy recovery capability improves overall energy efficiency and reduces energy waste.

5. Proper Sizing and System Design:

Selecting the appropriate size and capacity of a gas air compressor is crucial for energy savings. Over-sizing a compressor can lead to excessive energy consumption, while under-sizing can result in inefficient operation and increased energy usage. Properly sizing the compressor based on the specific air demands ensures optimal efficiency and energy savings.

6. Regular Maintenance:

Maintaining gas air compressors in good working condition is essential for energy efficiency. Regular maintenance, including cleaning or replacing air filters, checking and repairing leaks, and ensuring proper lubrication, helps optimize compressor performance. Well-maintained compressors operate more efficiently, consume less energy, and contribute to energy savings.

7. System Optimization:

For larger compressed air systems that involve multiple compressors, implementing system optimization strategies can further enhance energy savings. This may include employing advanced control systems, such as variable speed drives or sequencers, to match compressed air supply with demand, minimizing unnecessary energy usage.

In summary, gas air compressors contribute to energy savings through their efficient power sources, reduced electricity consumption, demand-sensitive operation, energy recovery systems, proper sizing and system design, regular maintenance, and system optimization measures. By utilizing gas-powered compressors and implementing energy-efficient practices, businesses and industries can achieve significant energy savings in their compressed air systems.

air compressor

Can Gas Air Compressors Be Used in Remote Locations?

Yes, gas air compressors are well-suited for use in remote locations where access to electricity may be limited or unavailable. Their portability and reliance on gas engines make them an ideal choice for providing a reliable source of compressed air in such environments. Here’s a detailed explanation of how gas air compressors can be used in remote locations:

1. Independence from Electrical Grid:

Gas air compressors do not require a direct connection to the electrical grid, unlike electric air compressors. This independence from the electrical grid allows gas air compressors to be used in remote locations, such as wilderness areas, remote job sites, or off-grid locations, where it may be impractical or cost-prohibitive to establish electrical infrastructure.

2. Mobility and Portability:

Gas air compressors are designed to be portable and easy to transport. They are often equipped with handles, wheels, or trailers, making them suitable for remote locations. The gas engine powering the compressor provides mobility, allowing the compressor to be moved to different areas within the remote location as needed.

3. Fuel Versatility:

Gas air compressors can be fueled by various types of combustible gases, including gasoline, diesel, natural gas, or propane. This fuel versatility ensures that gas air compressors can adapt to the available fuel sources in remote locations. For example, if gasoline or diesel is readily available, the gas air compressor can be fueled with these fuels. Similarly, if natural gas or propane is accessible, the compressor can be configured to run on these gases.

4. On-Site Power Generation:

In remote locations where electricity is limited, gas air compressors can serve as on-site power generators. They can power not only the compressor itself but also other equipment or tools that require electricity for operation. This versatility makes gas air compressors useful for a wide range of applications in remote locations, such as powering lights, tools, communication devices, or small appliances.

5. Off-Grid Operations:

Gas air compressors enable off-grid operations, allowing tasks and activities to be carried out in remote locations without relying on external power sources. This is particularly valuable in industries such as mining, oil and gas exploration, forestry, or construction, where operations may take place in remote and isolated areas. Gas air compressors provide the necessary compressed air for pneumatic tools, drilling equipment, and other machinery required for these operations.

6. Emergency Preparedness:

Gas air compressors are also beneficial for emergency preparedness in remote locations. In situations where natural disasters or emergencies disrupt the power supply, gas air compressors can provide a reliable source of compressed air for essential equipment and systems. They can power emergency lighting, communication devices, medical equipment, or backup generators, ensuring operational continuity in critical situations.

7. Adaptability to Challenging Environments:

Gas air compressors are designed to withstand various environmental conditions, including extreme temperatures, humidity, dust, and vibrations. This adaptability to challenging environments makes them suitable for use in remote locations, where environmental conditions may be harsh or unpredictable.

Overall, gas air compressors can be effectively used in remote locations due to their independence from the electrical grid, mobility, fuel versatility, on-site power generation capabilities, suitability for off-grid operations, emergency preparedness, and adaptability to challenging environments. These compressors provide a reliable source of compressed air, enabling a wide range of applications in remote settings.

China wholesaler 10bar 15bar Liquid Petroleum Gas Booster Compressor 7.5kw LPG Compressor   air compressor portableChina wholesaler 10bar 15bar Liquid Petroleum Gas Booster Compressor 7.5kw LPG Compressor   air compressor portable
editor by CX 2024-05-16

Recent Posts